sunpeek.components.types.ApertureParameters#
- class sunpeek.components.types.ApertureParameters(**data)#
Bases:
BaseModelMethods
__init__(**data)Create a new model by parsing and validating input data from keyword arguments.
construct([_fields_set])copy(*[, include, exclude, update, deep])Returns a copy of the model.
dict(*[, include, exclude, by_alias, ...])from_orm(obj)json(*[, include, exclude, by_alias, ...])make_strings(v)model_construct([_fields_set])Creates a new instance of the
Modelclass with validated data.model_copy(*[, update, deep])!!! abstract "Usage Documentation"
model_dump(*[, mode, include, exclude, ...])!!! abstract "Usage Documentation"
model_dump_json(*[, indent, ensure_ascii, ...])!!! abstract "Usage Documentation"
model_json_schema([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name(params)Compute the class name for parametrizations of generic classes.
model_post_init(context, /)Override this method to perform additional initialization after
__init__andmodel_construct.model_rebuild(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate(obj, *[, strict, extra, ...])Validate a pydantic model instance.
model_validate_json(json_data, *[, strict, ...])!!! abstract "Usage Documentation"
model_validate_strings(obj, *[, strict, ...])Validate the given object with string data against the Pydantic model.
parse_file(path, *[, content_type, ...])parse_obj(obj)parse_raw(b, *[, content_type, encoding, ...])schema([by_alias, ref_template])schema_json(*[, by_alias, ref_template])update_forward_refs(**localns)validate(value)validate_units(v)- copy(*, include=None, exclude=None, update=None, deep=False)#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use
model_copyinstead.
If you need
includeorexclude, use:`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include (
Set[int] |Set[str] |Mapping[int,Any] |Mapping[str,Any] |None) – Optional set or mapping specifying which fields to include in the copied model.exclude (
Set[int] |Set[str] |Mapping[int,Any] |Mapping[str,Any] |None) – Optional set or mapping specifying which fields to exclude in the copied model.update (
Optional[Dict[str,Any]]) – Optional dictionary of field-value pairs to override field values in the copied model.deep (
bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Return type:
Self- Returns:
A copy of the model with included, excluded and updated fields as specified.
- model_config: ClassVar[ConfigDict] = {'alias_generator': None, 'arbitrary_types_allowed': True, 'from_attributes': True, 'populate_by_name': True, 'use_enum_values': True, 'validate_by_alias': True, 'validate_by_name': True}#
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)#
Creates a new instance of the
Modelclass with validated data.Creates a new model setting
__dict__and__pydantic_fields_set__from trusted or pre-validated data. Default values are respected, but no other validation is performed.- !!! note
model_construct()generally respects themodel_config.extrasetting on the provided model. That is, ifmodel_config.extra == 'allow', then all extra passed values are added to the model instance’s__dict__and__pydantic_extra__fields. Ifmodel_config.extra == 'ignore'(the default), then all extra passed values are ignored. Because no validation is performed with a call tomodel_construct(), havingmodel_config.extra == 'forbid'does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (
set[str] |None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from thevaluesargument will be used.values (
Any) – Trusted or pre-validated data dictionary.
- Return type:
Self- Returns:
A new instance of the
Modelclass with validated data.
- model_copy(*, update=None, deep=False)#
- !!! abstract “Usage Documentation”
[
model_copy](../concepts/models.md#model-copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [
__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, exclude_computed_fields=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)#
- !!! abstract “Usage Documentation”
[
model_dump](../concepts/serialization.md#python-mode)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (
Union[Literal['json','python'],str]) – The mode in whichto_pythonshould run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.include (
Union[set[int],set[str],Mapping[int,Union[set[int],set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[set[int],set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – A set of fields to include in the output.exclude (
Union[set[int],set[str],Mapping[int,Union[set[int],set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[set[int],set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – A set of fields to exclude from the output.context (
Any|None) – Additional context to pass to the serializer.by_alias (
bool|None) – Whether to use the field’s alias in the dictionary key if defined.exclude_unset (
bool) – Whether to exclude fields that have not been explicitly set.exclude_defaults (
bool) – Whether to exclude fields that are set to their default value.exclude_none (
bool) – Whether to exclude fields that have a value ofNone.exclude_computed_fields (
bool) – Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicatedround_tripparameter instead.round_trip (
bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].warnings (
Union[bool,Literal['none','warn','error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].fallback (
Optional[Callable[[Any],Any]]) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.serialize_as_any (
bool) – Whether to serialize fields with duck-typing serialization behavior.
- Return type:
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent=None, ensure_ascii=False, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, exclude_computed_fields=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)#
- !!! abstract “Usage Documentation”
[
model_dump_json](../concepts/serialization.md#json-mode)
Generates a JSON representation of the model using Pydantic’s
to_jsonmethod.- Parameters:
indent (
int|None) – Indentation to use in the JSON output. If None is passed, the output will be compact.ensure_ascii (
bool) – IfTrue, the output is guaranteed to have all incoming non-ASCII characters escaped. IfFalse(the default), these characters will be output as-is.include (
Union[set[int],set[str],Mapping[int,Union[set[int],set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[set[int],set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – Field(s) to include in the JSON output.exclude (
Union[set[int],set[str],Mapping[int,Union[set[int],set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[set[int],set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – Field(s) to exclude from the JSON output.context (
Any|None) – Additional context to pass to the serializer.by_alias (
bool|None) – Whether to serialize using field aliases.exclude_unset (
bool) – Whether to exclude fields that have not been explicitly set.exclude_defaults (
bool) – Whether to exclude fields that are set to their default value.exclude_none (
bool) – Whether to exclude fields that have a value ofNone.exclude_computed_fields (
bool) – Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicatedround_tripparameter instead.round_trip (
bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].warnings (
Union[bool,Literal['none','warn','error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].fallback (
Optional[Callable[[Any],Any]]) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.serialize_as_any (
bool) – Whether to serialize fields with duck-typing serialization behavior.
- Return type:
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or
Noneifconfig.extrais not set to"allow".
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation', *, union_format='any_of')#
Generates a JSON schema for a model class.
- Parameters:
by_alias (
bool) – Whether to use attribute aliases or not.ref_template (
str) – The reference template.union_format (
Literal['any_of','primitive_type_array']) –The format to use when combining schemas from unions together. Can be one of:
'any_of': Use the [anyOf](https://json-schema.org/understanding-json-schema/reference/combining#anyOf)
keyword to combine schemas (the default). -
'primitive_type_array': Use the [type](https://json-schema.org/understanding-json-schema/reference/type) keyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type (string,boolean,null,integerornumber) or contains constraints/metadata, falls back toany_of.schema_generator (
type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchemawith your desired modificationsmode (
Literal['validation','serialization']) – The mode in which to generate the schema.
- Return type:
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params)#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (
tuple[type[Any],...]) – Tuple of types of the class. Given a generic classModelwith 2 type variables and a concrete modelModel[str, int], the value(str, int)would be passed toparams.- Return type:
- Returns:
String representing the new class where
paramsare passed toclsas type variables.- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- model_post_init(context, /)#
Override this method to perform additional initialization after
__init__andmodel_construct. This is useful if you want to do some validation that requires the entire model to be initialized.- Return type:
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (
bool) – Whether to force the rebuilding of the model schema, defaults toFalse.raise_errors (
bool) – Whether to raise errors, defaults toTrue._parent_namespace_depth (
int) – The depth level of the parent namespace, defaults to 2._types_namespace (
Mapping[str,Any] |None) – The types namespace, defaults toNone.
- Return type:
- Returns:
Returns
Noneif the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returnsTrueif rebuilding was successful, otherwiseFalse.
- classmethod model_validate(obj, *, strict=None, extra=None, from_attributes=None, context=None, by_alias=None, by_name=None)#
Validate a pydantic model instance.
- Parameters:
obj (
Any) – The object to validate.extra (
Optional[Literal['allow','ignore','forbid']]) – Whether to ignore, allow, or forbid extra data during model validation. See the [extraconfiguration value][pydantic.ConfigDict.extra] for details.from_attributes (
bool|None) – Whether to extract data from object attributes.context (
Any|None) – Additional context to pass to the validator.by_alias (
bool|None) – Whether to use the field’s alias when validating against the provided input data.by_name (
bool|None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Return type:
Self- Returns:
The validated model instance.
- classmethod model_validate_json(json_data, *, strict=None, extra=None, context=None, by_alias=None, by_name=None)#
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (
str|bytes|bytearray) – The JSON data to validate.extra (
Optional[Literal['allow','ignore','forbid']]) – Whether to ignore, allow, or forbid extra data during model validation. See the [extraconfiguration value][pydantic.ConfigDict.extra] for details.context (
Any|None) – Extra variables to pass to the validator.by_alias (
bool|None) – Whether to use the field’s alias when validating against the provided input data.by_name (
bool|None) – Whether to use the field’s name when validating against the provided input data.
- Return type:
Self- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If
json_datais not a JSON string or the object could not be validated.
- classmethod model_validate_strings(obj, *, strict=None, extra=None, context=None, by_alias=None, by_name=None)#
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (
Any) – The object containing string data to validate.extra (
Optional[Literal['allow','ignore','forbid']]) – Whether to ignore, allow, or forbid extra data during model validation. See the [extraconfiguration value][pydantic.ConfigDict.extra] for details.context (
Any|None) – Extra variables to pass to the validator.by_alias (
bool|None) – Whether to use the field’s alias when validating against the provided input data.by_name (
bool|None) – Whether to use the field’s name when validating against the provided input data.
- Return type:
Self- Returns:
The validated Pydantic model.